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Abstract

A spectral multidomain penalty method model has been developed for the simulation of high Reynolds number

localized stratified turbulence. This is the first time that a penalty method, with a particular focus on subdomain inter-

face treatment, has been used with a multidomain scheme to simulate incompressible flows. The temporal discretization

ensures maximum temporal accuracy by combining third order stiffly stable and backward differentiation schemes with

a high-order boundary condition for the pressure. In the non-periodic vertical direction, a spectral multidomain discre-

tization is used and its stability for under-resolved simulations at high Reynolds numbers is ensured through use of pen-

alty techniques, spectral filtering and strong adaptive interfacial averaging. The penalty method is implemented in

different formulations for both the explicit non-linear term advancement and the implicit treatment of the viscous terms.

The multidomain model is validated by comparing results of simulations of the mid-to-late time stratified turbulent

wake with non-zero net momentum to the corresponding laboratory data for a towed sphere. The model replicates cor-

rectly the characteristic vorticity and internal wave structure of the stratified wake and exhibits robust agreement with

experiments in terms of the temporal power laws in the evolution of mean profile characteristic velocity and

lengthscales.
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1. Introduction

1.1. Background: localized stratified turbulence

Stably stratified turbulent flows are ubiquitous in natural fluids [16,33,57]. Due to the restoring effect of
buoyancy, any turbulence producing sizable vertical transport and diapycnal mixing occurs locally and epi-

sodically at high values of Reynolds number (defined in terms of a characteristic geometric length and a

large-scale velocity), Re J O(104). The stable stratification gives rise to characteristic forms of fluid motion

such as internal gravity waves and remarkably organized clusters of quasi two-dimensional horizontal

(‘‘pancake’’) vortices [17,46,53]. It is of interest to fluid mechanicists, physical oceanographers and meteor-

ologists to not only understand the fundamental physics of stratified turbulence but also correctly param-

eterize it for use in large-scale circulation models [37]. In this respect, numerical simulations play a critical

role. The ultimate objective of a numerical simulation is to provide a stable and, accurate and realistic

reproduction of the physics of the geophysical stratified flow under consideration at all relevant spatiotem-

poral scales and at a tractable computational cost.

The accuracy of a numerical simulation is highly contingent on the choice of numerical discretization. It

is well known that spectral discretizations provide the most accurate numerical approximation of the gov-

erning equations [4,6,9], particularly in direct numerical simulation (DNS) where one intends to capture the

full range of scales of the flow and the only dissipative mechanism at the smallest scales should be molecular

viscosity rather than some truncation error-induced artificial damping. Thus, a very accurate description of

dissipation and mixing processes may be obtained [50]. Stably stratified homogeneous turbulence is an ex-
tremely popular template flow for a stratified turbulent flow, in part due to the ease with which it can be

studied by means of DNS [31,36]. Periodic boundary conditions in all three spatial directions may be con-

sidered for the simulation of such a flow and thus one may employ straightforward Fourier discretization.

It is questionable, however, how representative space-filling stratified homogeneous turbulence is of its

localized geophysical counterpart. Obviously, the accurate reproduction of realistic flow physics also depends

on how closely the forcing and boundary conditions of the simulation correspond to those of the original geo-

physical flow and how well both of the above are accommodated by the discretization scheme. To this end,

Fourier discretization is too restrictive. A more flexible discretization scheme is desired which accomodates
realistic boundary conditions and is adaptable to the spatial distribution of the external forcing.

An accurate and realistic simulation should also achieve as closely as possible the range of governing

parameters associated with the geophysical flows of interest, in particular, their characteristically high val-

ues of Re. In high Re flow simulations, one may be interested in the dynamics of the energy-containing

scales of stratified turbulence but may be unable to resolve the smallest, dissipative scales due to restrictions

in available computer resources. The introduction of a subgrid scale (SGS) model, providing a reliable cou-

pling between resolved and unresolved scales, is then imperative. The application of a certain class of

weakly dissipative SGS models [12] along with high-order numerical methods to finite domain under-re-
solved simulations leads to numerical instabilities detrimental to the long-time integration of the governing

equations. Therefore, a discretization scheme is required that not only accommodates more realistic forc-

ing/boundary conditions but also is stable at high Re with no adverse impact on the spectral accuracy of the

scheme. The two above needs are what motivate not only the remainder of Section 1 but also the develop-

ment of the spectral multidomain penalty method outlined in this paper.

1.2. Representation/discretization of localized flows

Introducing a non-periodic vertical direction allows for the specification of a more realistic, non-

space-filling stratified turbulent flow. In such a case, Fourier cosine/sine discretization may be used in

the vertical to maintain spectral accuracy [24,50,61]. Such a scheme however, is restricted to strictly
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symmetric Dirichlet/Dirichlet or Neumann/Neumann boundary conditions at the top and bottom of the

computational domain. Low-order finite difference schemes overcome this restriction in choice of boundary

conditions but degrade the accuracy of the numerical approximation due to their inherent truncation error.

A logical first choice is to then use orthogonal polynomial base functions (Chebyshev or Legendre) to dis-

cretize the vertical in one single domain, as has been done in the simulation of a stratified shear layer [7].
This approach, however, is associated with a fairly slow computation when any sizable number of vertical

grid points (JO(102)) is desired.

Spectral multidomain/spectral element discretizations [9,23] allow one to overcome many of the limita-

tions discussed above. The computational domain is partitioned in subdomains of varying size and order of

polynomial approximation. Subdomains communicate with their neighbors via a simple patching condition

[4]. The immediate advantages of such an approach are [28]:

1. Flexibility in local resolution which allows adequate treatment of strongly localized solutions/energetic
flow regions without overresolving smooth/less-active parts of the flow when the location of these regions

is known a priori. ‘‘Adequate’’ is meant in the sense of capturing the range of scales that are of physical

interest in the specific location.

2. Reduced operation count and impact of round-off error compared to a single domain computation with

the same number of grid points.

Differences in the formulations of spectral multidomain and spectral element methods are discussed in

various textbooks [4,6].

1.3. Spectral element simulations of high Re flows

Spatially continuous spectral element methods have been applied extensively to DNS of engineering

flows in complex geometries [9], which becomes costly when even moderate Re are desired. However, as

already mentioned, geophysical turbulence tends to be governed by high values of Re and the efficient real-

istic-cost simulation of a high Re flow is inherently under-resolved. The concept of under-resolution has

two components: physical and numerical. From a physical standpoint, an under-resolved simulation does
not capture the full range of scales present in the high Re flow of interest. A range of scales, spanning from

the viscous cut-off to one or more orders of magnitude above it, is not accounted for and a SGS model is

required to couple these unresolved scales to the resolved ones. The numerical implication of under-reso-

lution is that molecular viscosity has a negligible impact on the resolved scales and, when an inherently non-

dissipative spectral element (or multidomain) method is used, numerical instabilities may grow undisturbed.

The majority of currently used SGS models are based on dissipative eddy viscosities [48]. Recently, how-

ever, an alternative approach to SGS modelling has emerged whose only requirement is that the numerical

mesh resolves adequately the peak in the energy spectrum of the flow under consideration. The range of
resolved scales is divided into two subranges, the physical scales and the estimated (or filtered) scales. Both

scale subranges are solutions of the Navier–Stokes equations. The estimated scales, the highest resolved

modes of the solution, are subject to some form of periodic filtering. Variants of this modelling approach

in large eddy simulation (LES) of turbulence are the estimation model [12], spectrally vanishing viscosity

(SVV) schemes [38,40] and the approximate deconvolution method [55]. To best evaluate the effect of

the SGS model, all three approaches rely on weakly or non-dissipative high-order methods. Thus, a com-

mon prerequisite is that the underlying numerical scheme (particularly in the case of a finite domain) per-

form stably at asymptotically high Re when the SGS model is turned-off. If such stable performance is
guaranteed the SGS model does not have to assume the additional role of a stabilizer. Similar principles,

i.e., stable performance in the absence of any parameterizations, apply for eddy-resolving spectral element

ocean models [34,35].
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Unfortunately, when a spectral element (or multidomain) scheme is employed in a finite domain un-

der-resolved simulation, the stability of the numerical scheme is confronted with significant challenges

due to the numerical component of under-resolution. In the spectral element ocean model [34,35], un-

der-resolution-driven instability is overcome in part through spectral filtering, the application of an ex-

plicit low-pass filter on the spectral approximation of the numerical solution [42]. However, full
numerical stability is only ensured through introduction of enhanced numerical viscosities. When

enforcing the no-slip condition at the domain boundaries, the numerical viscosities generate thick

and non-physical boundary layers which may spuriously bias the internal high Re dynamics of the flow

[5]. In the case of the incompressible Navier–Stokes equations, spectral multidomain techniques have

only once been applied to relatively high Re localized stratified turbulence, where 4th/5th order subdo-

mains were used [59]. At the higher Re � O(104) considered, high resolution (2562 · 512) and an

overlapping subdomain scheme in the energetic core of the flow were adequate in dealing with

under-resolution-generated instabilities at the subdomain interfaces. The only other existing application
of higher order methods to moderately high Re stratified turbulence have been been explicitly filtered

4th order compact finite difference schemes in a single domain [49]. Unstratified higher Re studies using

spectral elements have been performed using either spectral filtering [18,45] or the spectral vanishing

viscosity formulation [38,40,62]. Again, the Re considered are relatively moderate (e.g. cylinder wake

Re = 3 · 103 or channel flow of Re = 7.5 · 103). The spectral element method has also been used in con-

juction with the dynamic estimation model [1] for the simulation of Res < 103 channel flow. The eddy

viscosity coefficients of the dynamic SGS model suppress any under-resolution problems by treating the

energy flux to the unresolved scales as a dissipative process. The combination of such dissipative models
with low-order finite difference schemes in the non-periodic vertical direction is responsible for the sta-

ble LES simulation of higher Re of channel flows [21] and wakes [13]. Although the truncation error of

these low-order schemes provides additional artificial dissipation and thereby achieves higher Re, it also

is detrimental to the accuracy of the results.

Following the above discussion, a spectral multidomain scheme, despite its potential, is not foolproof to

numerical instability when applied to a strongly under-resolved simulation of an incompressible high Re

flow. The absence of any artificial dissipation in the numerical scheme or SGS model leads to instabilities

due to aliasing effects [23] closely linked to under-resolved numerical/viscous physical boundary layers [9].
Specifically, Gibbs oscillations develop, which are most pronounced at the physical boundaries and subdo-

main interfaces. The oscillations are worse with increasing Re (and thus degree of under-resolution) and

generate catastrophically interacting artificial internal waves in a stratified flow.

1.4. Spectral multidomain penalty methods

Spectral filtering [23,42] is least effective at the boundaries or subdomain interfaces. Thus, a method-

ology is needed to ensure the stability of a spectral multidomain scheme in these regions for a highly
under-resolved simulation. In this respect, spectral penalty methods are very effective. Combined with

spectral filtering they allow the highest attainable Re. Penalty methods [28–30] recognize that numerical

instabilities arise because boundary/patching conditions are explicitly enforced and there is no provision

that the equation solved is satisfied arbitrarily close to the boundary/subdomain interface. By collocat-

ing a linear combination of the equation and boundary/patching conditions (the latter multiplied by a

penalty term) at the corresponding spatial locations, the penalty method produces a smooth numerical

solution with near-negligible error at the boundaries and interfaces. Unlike conventional spectral ele-

ment/multidomain schemes, penalty methods are discontinuous at the subdomain interfaces. Spectral
multidomain penalty methods (hereafter referred to as SMPM) using moderate spectral filtering, have

attained a Re value as high as 3 · 105 [14]. Penalty methods have been used successfully in the

multidomain simulation of turbulent reacting flows [14,28] and, in a geophysical context, in a nodal
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discontinuous Galerkin formulation of the shallow water equations [22]. However, all the above studies

deal with hyperbolic partial differential equations. Only simple, time-independent, one-dimensional ellip-

tical problems were considered in the early work of Funaro [19,20]. The only work which has imple-

mented penalty methods in the simulation of incompressible Navier–Stokes equations (specifically in the

velocity–vorticity formulation) [58] utilizes the spatially continuous spectral element discretization, em-
ploys penalty terms only at the physical boundaries and is restricted to a fairly low Re = 103.

1.5. A new application of SMPM to high Re turbulent flows

This paper outlines the main components of a spectral multidomain penalty method developed for the

purpose of a stable and spectrally accurate simulations of high Re localized stratified turbulence with a non-

periodic vertical direction. This is the first time multidomain penalty methods have been applied to the sim-

ulation of incompressible flows, with a particular focus on subdomain interfaces. In the numerical method,
the penalty technique is combined with moderate spectral filtering, adaptive subdomain interfacial averag-

ing and a high-order temporal discretization [39]. Since SGS modelling is outside the scope of this paper, it

is emphasized that no specific SGS model is used beyond explicit filtering (which may tentatively be viewed

as a surrogate to an SGS model, as indicated in Section 5). The stratified turbulent wake of a towed sphere

is used as base flow for model validation. The SMPM solver replicates extremely well the laboratory wake

dynamics both in terms of quantitative timeseries of mean flow quantities as well as qualitative features of

the vorticity field. The transition points between different regimes in the evolution of a stratified wake

[51,53] are reproduced correctly.
The basic incompressible stratified flow model, base flow and initialization procedure are discussed in

Section 2. The numerical method is presented in detail in Section 3. Results validating the spectral multi-

domain method are shown in Section 4. A summary is given in Section 5.
2. Incompressible stratified flow model

2.1. Governing equations

This study considers incompressible stratified flow governed by the Navier–Stokes equations under the

Boussinesq approximation [41,61]:
ou

ot
¼ � 1

2
½u � ruþrðu � uÞ� þ Fg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NðuÞ

� 1

q0

rp0 þ mr2u|{z}
LðuÞ

; ð1Þ

oq0

ot
¼ �r � ðuðq0 þ qðzÞÞÞ þ jr2q0; ð2Þ

r � u ¼ 0; ð3Þ

where Fg ¼ �g
q0

q0

k̂: ð4Þ
The five unknowns to solve for are the velocity vector u = (u,v,w), and the pressure and density perturba-

tions p 0 and q 0, respectively. The non-linear term in the momentum Eq. (1) is written in the skew-symmetric

form to minimize aliasing effects in the numerical solution [9]. The perturbations p 0 and q 0 originate from
the decomposition of the corresponding total values into [41]:
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p ¼ pðx; y; zÞ þ p0ðx; y; z; tÞ; ð5Þ

q ¼ q0 þ qðzÞ þ q0ðx; y; z; tÞ: ð6Þ

Following the Boussinesq approximation, the reference pressure, pðx; y; zÞ and density, q0 þ qðzÞ are in

hydrostatic balance:
op
oz

¼ �ðq0 þ qÞg: ð7Þ
2.2. Boundary conditions

The computational domain is designed to simulate a portion of a laboratory water tank. The top and
bottom boundaries of the domain correspond to the top free surface (considered to be free slip) and bottom

wall, respectively, of the tank. The lateral domain boundaries are considered periodic and the horizontal

boundary conditions are therefore:
ðu; v;w; p0; q0Þðx; y; z; tÞ ¼ ðu; v;w; p0; q0Þðxþ Lx; y; z; tÞ; ð8Þ

ðu; v;w; p0; q0Þðx; y; z; tÞ ¼ ðu; v;w; p0; q0Þðx; y þ Ly ; z; tÞ: ð9Þ

The bottom boundary is a solid wall with no slip boundary conditions:
uðx; y; 0; tÞ ¼ 0; vðx; y; 0; tÞ ¼ 0; wðx; y; 0; tÞ ¼ 0: ð10Þ

The top boundary is a free-slip free-surface:
ou
oz

����
ðx;y;Lz;tÞ

¼ 0;
ov
oz

����
ðx;y;Lz;tÞ

¼ 0; wðx; y; Lz; tÞ ¼ 0: ð11Þ
The density perturbation is subject to a Dirichlet boundary condition at both vertical boundaries
q0ðx; y; 0; tÞ ¼ q0ðx; y; Lz; tÞ ¼ 0: ð12Þ

The boundary conditions for the pressure are of purely numerical nature and their discussion is thus de-

ferred to Section 3.1.
3. Numerical method

3.1. Temporal discretization

For the temporal discretization of Eqs. (1)–(3), a high-accuracy pressure projection scheme [39] is em-

ployed, which has been well tested in the recent spectral method literature (e.g. [1,38]). According to this

scheme, if one integrates Eqs. (1)–(3) in time from level tn to tn + 1 one obtains the following semi-discrete
equations decomposed into three fractional steps for u:
û�
PJ i�1

q¼0

aqun�q

Dt
¼
XJ e�1

q¼0

bqNðun�qÞ; ð13Þ

^̂u� û

Dt
¼ �r/nþ1; ð14Þ
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c0u
nþ1 � ^̂u

Dt
¼ mLðunþ1Þ: ð15Þ
The splitting procedure for q 0 consists of two steps analogous to Eqs. (13) and (15). In Eqs. (13)–(15), a 3rd

order backward differentiation scheme (BDF3 with Ji = 3) [9] is used to discretize the temporal derivative

and enhance the temporal accuracy of the splitting approach. The viscous operator L is treated fully implic-

itly. The weakly dissipative nature of such an approximation is helfpul in stability-sensitive under-resolved

problems. The non-linear terms N are advanced in time via a third order stiffly stable scheme (SS3 with

Je = 3)[39] allowing for maximum value of a stable timestep. The values of the coefficients aq, bq and c0
for a BDF3–SS3 scheme may be found in Karniadakis et al. [39].

The quantity /n + 1
Z tnþ1

tn

rp0 dt ¼ Dtr/nþ1 ð16Þ
is an intermediate scalar field that ensures that the final velocity un + 1 is incompressible. Note that in Eq.

(14), it is assumed r � ^̂u ¼ 0 and the Poisson equation is solved for the pressure
r2/nþ1 ¼ r � û

Dt

� �
: ð17Þ
The boundary conditions for u ((10) and (11)) are enforced in Eq. (15) and an analogous approach is
followed for q 0. However, special care must be taken for the correct choice of intermediate boundary con-

ditions for / in Eq. (17). An intermediate boundary condition that ensures high temporal accuracy for the

given scheme is [39]
o/nþ1

oz

����
b

¼
XJ e�1

q¼0

bqNðwn�qÞ
�����
b

�
XJ e�1

q¼0

bq½mr� ðr � wÞ�n�q

�����
b

; ð18Þ
where jb denotes z = 0,Lz and the coefficients bq have the same value as in the SS3 scheme of Eqs. (13)–(15).

Guermond and Shen [25] prove that the above splitting scheme (Eqs. (13), (14), (15) and (18)) is equivalent

to the rotational form of a velocity-correction projection scheme whose second order variant exhibits

O(Dt2) accuracy in both u and /.

3.2. Spatial discretization

In the periodic horizontal direction, Fourier spectral discretization is used with Nx and Ny Fourier
modes in the longitudinal and spanwise direction, respectively. Horizontal derivatives are calculated in a

straightforward fashion in Fourier spectral space. In the vertical direction, the computational domain is

partitioned into M subdomains of variable height Hk and order of polynomial approximation Nk

(k = 1, . . . , M) (Fig. 2). Within each subdomain, Legendre spectral discretization is used and for the specific

problem under consideration Nk is fixed and equal to a fixed value N in all subdomains. 1 In each subdo-

main, any function f(z) may be approximated on the Gauss–Legendre–Lobatto grid as [6]:
f ðzÞ ¼
XNk�1

j¼0

~f jP jðzÞ; ð19Þ
this manuscript, the symbol N may represent two different quantities, the order of polynomial approximation in a subdomain

Brunt–Vaisala frequency. In a given section of the manuscript, the quantity N specifically refers to is obvious from the context of

companying text.
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where ~f j is the amplitude of the jth Legendre mode and Pj(z) the jth order Legendre approximating poly-

nomial [6]. Spectral multidomain methods are designed as collocation methods [6] and in this study f(z) is

approximated in nodal, not modal, form [4,23]:
f ðzÞ ¼
XNk�1

j¼0

f ðzjÞljðzÞ; ð20Þ
where lj(z) is the jth order Lagrange interpolating polynomial (cardinal function) [4,6]. The discrete vertical

derivative of f(z) is computed by linearly mapping the global vertical coordinate z within a specific subdo-

main onto a local coordinate f2 [�1,1] with f = �1 and 1 corresponding to the bottom and top end-point of

the subdomain, respectively
df
dz

ðziÞ ¼
d

df
df
dz

f ðziÞ ¼
2

Hk

XNk�1

j¼0

f ðzjÞDij; ð21Þ
where Dij is the Legendre spectral differentiation matrix. Conventionally, Dij is computed as a function of Pj

[6]. However, such a calculation is error-prone especially for higher order derivatives, under-resolved func-

tions and high values of Nk [15]. Such errors may prove to be catastrophic in the family of splitting schemes

that do not require boundary conditions for the pressure [11] due to the explicit evaluation of third-order

vertical derivatives. In the splitting scheme described in Section 3.1, as a safeguard against errors induced

by spectral differentiation an alternative vertical derivative calculation technique, described by Costa and

Don [8], is used. The above technique and the classical pseudospectral approach [6] are used to compute

all the derivatives in the estimation of the non-linear term of Eq. (13).

In any case, as discussed in Section 1.3, at high Re, the existing splitting scheme and spectral multido-
main discretization are prone to significant numerical instabilities most evident at the boundaries and sub-

domain interfaces. The source of these instabilities are aliasing effects driven by thin numerical/physical

boundary layers. The instabilities generate spurious energy with increasingly higher and higher frequency

content which has a catastrophic effect on the long-term integration of the governing equations [23]. It is

imperative to apply stabilization methodologies, namely penalty methods and in addition, spectral filtering

and strong adaptive interfacial averaging.
3.3. Spectral multidomain penalty methods

The recent thrust in development of penalty methods originated from the need to implement appropriate

boundary conditions for single domain wave-dominated dissipative problems in a manner that is easy, sta-

ble and accurate [30]. The direct enforcement of the boundary conditions does not guarantee that the equa-

tion is satisfied arbitrarily close to the boundary. At high Re, thin boundary layers and consequently,

unresolved gradients develop which contaminate the flow with Gibbs oscillations through aliasing. As al-

ready discussed in Section 1.4, spectral filtering does damp these oscillations in the domain/subdomain inte-

rior but is least effective near the boundaries/interfaces. When using a collocation method as is often done
with Legendre/Chebyshev schemes, this problematic behavior may be overcome by collocating both the

equation and the boundary condition at the physical boundary, the latter multiplied by a penalty coeffi-

cient. As a result, the eigenvalues of the associated differential operators are modified [30] and a smooth

numerical solution is obtained subject to an error (penalty) equal to the order of the spectral scheme.

The spectral accuracy of the numerical scheme is negligibly impacted and one may compute stably the high

Re internal dynamics of the flow without having to resolve the thin numerical/viscous physical boundary

layers. Consequently, penalty methods are a key enabling technique for the simulation of localized high

Re turbulence.
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In the case of spectral multidomain discretization, the core of the penalty method is similar to that of the

single domain case [28]. Each individual subdomain may be treated as a single domain whose interfaces

support patching conditions that act as open boundary conditions through which information is exchanged

with adjacent subdomains. The exact nature of the patching conditions depends on whether the equation is

parabolic or hyperbolic. In both cases, the patching conditions are such that C0 and C1 continuity is en-
forced only weakly since the interface of two adjacent subdomains corresponds to the same location in

physical space but to two separate grid-points. Thus, the penalty method is inherently discontinuous and

it is this weak continuity on the numerical grid that allows for a more stable and smooth numerical solution

at the subdomain interfaces.

In terms of the splitting scheme outlined in Section 3.1, the penalty method is applied at two different levels

in the incompressible Navier–Stokes equations. The explicit non-linear term advancement is treated as a

hyperbolic equation whereas the implicit viscous term treatment as a parabolic equation (in this section all

subsequent equations are written as a function of the u-velocity without loss of generality):
ou
ot

¼ NðuÞ; ð22Þ

ou
ot

¼ mLðuÞ: ð23Þ
The temporal derivatives in Eqs. (22) and (23) are only approximations to those appearing in Eqs.

(13)–(15).

Consider first Eq. (22). Here Gibbs oscillations at subdomain interfaces must be suppressed. The bound-
ary conditions, imposed strictly in Eq. (15), are not incorporated in the penalty treatment of the hyperbolic

problem. Well-posedness dictates that in each subdomain of index-k and uniform order Nk = N (all subse-

quent penalty formulations are valid for variable Nk as well), Eq. (22) be subject to the following set of

patching conditions at the bottom and top subdomain interfaces, respectively:
auk0 ¼ gk1ðtÞ; where gk1ðtÞ ¼ auk�1
N ;

cukN ¼ gk2ðtÞ; where gk2ðtÞ ¼ cukþ1
0 :

ð24Þ
The penalty formulation of (22), in physical space, is
ouk

ot
¼ NðukÞ � sk1Q

�
k ðzki Þ auk0 � gk1ðtÞ

� �
� sk2Q

þ
k ðzki Þ cukN � gk2ðtÞ

� �
; ð25Þ
where
Q�
k ðzki Þ ¼ di0; Qþ

k ðzki Þ ¼ diN ; ð26Þ

here dij is the Kronecker delta function with subscript i corresponding to the collocation point zki . Following
the treatment by Hesthaven of patching conditions as localized open boundary conditions (locally, each

interface experiences inflow or outflow), the values of the coefficients a; c; sk1 and sk2 are determined by

considering the value of the vertical interfacial velocities W k
0 and W k

N at the previous timesteps. In the dis-

cretized form of the equations (where f – see Section 3.2 – is the vertical coordinate), if n̂ is the vector nor-

mal to the subdomain interface, the following cases are distinguished:
W k
0 � n̂0 P 0 : a ¼ 0; sk1 ¼ 0;

W k
0 � n̂0 < 0 : a ¼ W 0; sk1 ¼ 1

2x
2
Hk
;

W k
N � n̂N P 0 : c ¼ 0; sk2 ¼ 0;

W k
N � n̂N < 0 : c ¼j W N j; sk2 ¼ 1

2x
2
Hk
;

8>>>><
>>>>:
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where
x ¼ 2

NðN þ 1Þ ð27Þ
and Hk is the height of the kth subdomain. The values of sk1 and sk2 are what is used in the discretized for-

mulation of (25). Eqs. (24) and (25) imply weak C0 continuity at the subdomain interfaces due to the nor-

mal advective flux of momentum/mass.

The penalty formulation of (23) is significantly different from that of (22) due to its parabolic nature. Eq.

(23) is solved in Fourier space and its discretized form for each pair of horizontal wavenumbers (kx,ky) is
D2u� k2x þ k2y �
c0
mDt

� �
u ¼ �

^̂u
mDt

; ð28Þ
where
D � o

oz
and u is the value of the velocity at timestep n + 1. It is immediately obvious that in the case of significantly

high Re, (28) has excessively thin numerical boundary layers of thickness Oð
ffiffiffiffiffiffiffi
mDt

p
Þ whose resolution re-

quires prohibitively high number of grid points at the boundary to be resolved [4,9]. As a result, a singularly
perturbed boundary value problem arises which has serious repercussions on the stability of the numerical

solution. In addition, at high Re, strict enforcement of C0 and C1 continuity in the solution of (28) over-

excites the higher Legendre modes resulting in spurious oscillatory behavior at the subdomain interfaces.

For the case of the under-resolved Navier–Stokes equations, the neglect of any penalty terms for the

non-linear term computation compounds these oscillations through aliasing effects.

To derive the penalty form of (28) one defines a small quantity
e � k2x þ k2y �
c0
mDt

� ��1

ð29Þ
and recasts (28) as
u� eD2u ¼ e
^̂u
mDt

¼ F : ð30Þ
The boundary operators in each subdomain are determined by well posedness and the elliptical nature of

(30) and are given by:
auk0 � be
ouk0
ozk

¼ gk1ðtÞ; where gk1ðtÞ ¼ auk�1
N � be

ouk�1
N

ozk�1
;

cukN þ de
oukN
ozk

¼ gk2ðtÞ; where gk2ðtÞ ¼ cukþ1
0 þ de

oukþ1
0

ozkþ1
:

ð31Þ
Thus, the penalty formulation of (30) is
eD2u� uþ F � sk1Q
�
k ðzki Þ auk0 � be

ouk0
ozk

� gk1ðtÞ

 �

� sk2Q
þ
k ðzki Þ cukNk

þ de
oukN
ozk

� gk2ðtÞ

 �

¼ 0; ð32Þ
where Q�
k ðzki Þ and Qþ

k ðzki Þ are defined in (26). It is obvious that (31) and (32) enforce weak C0 and C1 con-

tinuity at the subdomain interfaces. At the physical boundaries, g11ðtÞ ¼ g1ðtÞ and gM2 ¼ g2ðtÞ, where g1(t)
and g2(t) are the boundary conditions (10)–(12). In the case of non-homogeneous boundary conditions

(as may happen with the pressure, discussed below), g1(t) and g2(t) are not the exact physical conditions

but a modified form that ensures the correct term balance in (31). The coefficients a, b, c and d are set
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to 1 at each subdomain interface and at the physical boundaries, their values are set to satisfy the physical

boundary conditions. The discretized form of (32) supplemented by (31) results in the solution of a linear

system of equations where the coefficient matrix is band-diagonal with bandwidth N and may be solved

through a variety of existing fast LU solvers. Finally, the coefficients sk1 and sk2 for the discrete equations

(where f is the mapped vertical coordinate) are determined by specific stability constraints, for the following
cases [30]:

1. Physical boundary with Dirichlet condition:
s11 ¼
e

ax2

2

H 0

� �2

; sM2 ¼ e
dx2

2

HM

� �2

; ð33Þ
where x is defined in (27).

2. Physical boundary with Neumann condition:
s11 ¼
1

bx
2

H 0

; sM2 ¼ 1

dx
2

HM
: ð34Þ
3. Subdomain interface with Robin patching condition:
sk1 ¼
1

xeb
eþ 2j1 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
1 þ ej1

q
 �
2

Hk
;

sk2 ¼
1

xed
eþ 2j2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
2 þ ej2

q
 �
2

Hk
;

ð35Þ
where j1 = xa/b and j2 = xc/d. In the numerical implementation of a Neumann boundary condition, the

value indicated by (34) should be strictly adhered to. For Dirichlet/Robin conditions, the values indi-

cated in (33) and (35) are the lower bound of associated stability requirements. In the simulations of this

paper, the penalty coefficients for a Dirichlet condition are kept fixed at the value prescribed above.
However, the upper stability bound on the penalty coefficient of a Robin patching condition is of

O(e�1) or greater than the corresponding lower bound [30]. It was found that using a value equal to that

of (35) multiplied by a factor of Oð
ffiffiffiffiffiffiffi
e�1

p
Þ increased the stability of the scheme at the subdomain inter-

faces. An increased value of an interfacial penalty coefficient corresponds to stronger enforcement of the

patching conditions and thereby more local dissipation leading to increased stability.

The penalty treatment of (28) is applied to the Poisson equation for the pressure (17) in spectral space for

any given pair of horizontal Fourier wavenumbers (kx,ky) because (17) is a one-dimensional Helmholtz
equation. The only exception is the (0,0) Fourier mode of / which, however, is irrelevant to the computa-

tion because the corresponding mode of ^̂w is zero due to incompressibility and the boundary conditions for

w while the (0,0) modes of ^̂u and ^̂v are not /-dependent.
Note that the use of SMPM discretization allows maximum flexibility in the choice of boundary oper-

ators (Dirichlet/Neumann/Robin and homogeneous/non-homogeneous). Thus, the existing spectral multi-

domain model is amenable to the study of geophysical flows with complex boundary forcings (wind stress/

buoyancy flux).

3.4. Spectral filtering

For the grid resolutions considered in this paper, penalty methods allow an increase of the value of Re by

roughly two orders of magnitude. However, even such an increase is not sufficient to attain values of Re

typical of laboratory wake experiments and beyond. Some form of a hyperviscous operator is needed to
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ensure stability for these high Re. In practice, what is used instead, which has the same effect but avoids

additional stiffness and subsequent timestep limitations, is the application of a low-pass spectral filter on

the numerical solution whose convergence rate is thereby enhanced [23]. As long as certain basic require-

ments [23,42] are satisfied, no unique choice of a filter function is required and in this study, an exponential

filter [23] is used
rðkÞ ¼
1; 06 k6 kc;

exp �a k�kc
N�kc

� �ph i
; kc 6 k6N ;

(
ð36Þ
where p is the filter order, kc the filter lag and a = �ln eM with eM being the machine precision. The filtered

solution fF may now be expressed in terms of the modes of the numerical solution as:
f FðziÞ ¼
XNk�1

j¼0

rðkjÞ~f jP jðziÞ: ð37Þ
where kj is the jth discrete Legendre mode. An analogous expression may be written for filtering in Fourier

space [23].

A common concern with the implementation of spectral filtering in spatially continuous spectral element

methodologies is that filtering does not preserve the patching and boundary conditions and thus specific

measures need to be adopted [1,3,42]. Such a concern does not exist when using the inherently discontin-

uous penalty method because the error induced by the filtering operation is of the same order as the penalty
scheme [28], i.e., minimal.

In the incompressible spectral multidomain solver presented in this paper, spectral filtering is applied at

three levels when advancing the solution from time level (n) to level (n + 1). First, to eliminate aliasing ef-

fects, filtering is applied in both Fourier and Legendre space after advancing the non-linear terms in (13).

The solution to the Poisson equation (17) is filtered in the vertical direction to smooth out any errors in-

duced at the subdomain interfaces due to the discrete estimate of ow/oz. Finally, the solution of (15) is fil-

tered in the vertical. The order of the Legendre filter is the same in all three levels.

For the Re under consideration, use of spectral filtering is the inevitable price when confronted with the
associated high-degree of under-resolution. Filtering should not be viewed as a waste of resolution because

a significant percentage of modes of the numerical solution (O(40�45%) in Legendre space and O(70�75%)

in Fourier space) are not directly affected by the filtering procedure. The filtered modes act as a sink of both

numerical noise and energy flux from the large scales. Although their content is not necessarily physically

correct, their presence is needed to maintain the stability and spectral accuracy of the solution at the larger

resolved (physical) scales.
3.5. Strong adaptive interfacial averaging

Although filtering enhances even further the stability properties of a spectral multidomain penalty

scheme, the subdomain interfaces occasionally exhibit a propensity for numerical instability. Within each

subdomain, using the transformed coordinate f, application of the exponential filter of (36) is equivalent to

incorporation in the equation of the differential operator [23]
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
o

of


 �p
: ð38Þ
Obviously, (38) indicates that spectral filtering is least effective near the subdomain interfaces where the
highest Legendre modes are inherently most oscillatory [6]. To prevent the development and subsequent

growth of any such interfacial singularities a simple adaptive interfacial averaging technique is used. Once
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the final value of the numerical solution for (u,v,w,q 0) has been obtained in physical space, at the top inter-

face of the kth subdomain, when the following criterion is met [14]
j ukþ1
0 � ukN j

j ukþ1
0 þ ukN j

> Cave; ð39Þ
an averaging operation is performed
ukN ¼ ukþ1
0 ¼ 1

2
ukþ1
1 þ ukN�1

� 

: ð40Þ
The coefficient Cave is set equal to 0.005. Eq. (40) was found to be more effective than the technique used by

Don et al. [14]. Including the interfacial points in the averaging and even more so restricting the averaging

to the interface was found to not eliminate troublesome spikes in the solution. The averaging essentially

adds some weak local artificial dissipation to the scheme and is usually required for only a small fraction
(O(0.1%)) of the subdomain interfaces.
4. Results

4.1. Problem geometry

The base flow chosen to validate the spectral multidomain penalty model is a stratified turbulent wake
with non-zero net momentum. Such a flow corresponds to the mid-to-late time wake of a sphere of diameter

D towed with a velocity U in a linear density stratification of frequency N, where
N 2 � � g
q0

dq
dz

: ð41Þ
Note that the spatial discretization does not account for the sphere and focuses only on the flow gener-

ated in its wake. The computational domain of dimensions Lx · Ly · Lz is shown in Fig. 1 and corresponds

to a window fixed in space with respect to the moving sphere, as do the laboratory measurements [54]. Be-

hind the sphere, the wake is considered to be statistically stationary. The periodicity assumption in the x-

direction is valid because the length of the computational domain is much smaller than the total wake

length [13]. The spanwise periodicity assumption is also valid provided the horizontal lengthscale of the
wake does not become excessively large. Due to spanwise periodicity, internal waves radiated by the wake

re-enter the computational domain and thus after a certain point later in time, the internal wave field does

not correspond to its experimental counterpart. However, by that time the flow is efficiently decomposed

into internal waves and quasi-two-dimensional vortical modes and analysis of the latter [46] is possible

in isolation.
4.2. Initialization: replacing the sphere

Although the sphere is not accounted for in the computation, its effect must be incorporated in the initial

condition. The initial flow field is the superposition of an axisymmetric Gaussian mean velocity profile and

a turbulent fluctuation field
uðx; y; z; tÞ ¼ UX ðy; z; tÞ þ u0ðx; y; z; tÞ: ð42Þ
The X subscript indicates averaging in the streamwise direction. The magnitude and distribution of mean

and fluctuating velocity fields are specified based on available vertical profile measurements of stratified

sphere wakes [51–54] at Nt = 3 (downstream distance from the sphere, x/D = 6).



Fig. 1. Computational domain for the simulation of a mid-to-late time momentlumless stratified turbulent wake. The wake was

originally generated by a sphere of diameter D, towed with a velocity U, which however is not present in the computational domain.

The domain dimensions are Lx · Ly · Lz. Consistent with the salt-stratified water tank the domain has a solid wall bottom and free-slip

top and when needed, a linear stable density stratification may be imposed. Shown are also the horizontal and vertical centerplane

where the experimental data used in the initial condition are sampled.
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The mean velocity profile is a Gaussian:
UX ðy; z; tÞ ¼ U 0 exp � 1

2

y � 1
2
Ly

LY

� �2

� 1

2

z� 1
2
Lz

LZ

� �2
" #

; ð43Þ
where U0 is the maximum centerline velocity and LY and LZ the initial horizontal and vertical lengthscales,

respectively. Initially, one sets VX = WX = 0.

The fluctuating profile is also taken from laboratory data at Re = 5 · 103 and Fr = 4. The x-averaged
r.m.s. (root mean square) distribution of the fluctuating velocity is assumed to be axisymmetric and equi-

partitioned among its three components
u0X ðr; tÞ ¼ v0X ¼ w0
X ¼ U 0 a1 b1

r2

r2p

 !
� exp �0:5

r2

r2g

 !" #
; ð44Þ
where r = ((y � y0)
2 + (z � z0)

2)1/2. Although the assumptions of axisymmetry and energy equipartition are

debatable at Nt = 3, horizontal profiles from experiment are available from Nt = 9 onwards and a small

degree of extrapolation is required in specifying the initial condition in the horizontal direction in the simu-
lations (see Section 4.4). A delayed onset of asymmetry may result but its effect on later wake statistics is

negligible. Ideally, one would initialize the model with runs from simulations of stratified flow around a

sphere but a spectral multidomain scheme for such a simulation would be a challenge of its own. In addi-

tion, low-order scheme-based studies of sphere wakes have been restricted to Re = 200 [27].

The three-dimensional fluctuating velocity field is constructed as spectrally random noise in three-

dimensional Fourier space with a k�5/3 energy spectrum. An inverse Fourier transform is applied to

convert the noise into physical space and in the vertical the fields are projected on the non-uniform

Gauss–Lobatto–Legendre grid of each subdomain. Finally, the data is windowed in the envelope of
the r.m.s. profile of Eq. (44). Use of white noise is avoided because it is unphysical and detrimental

to the stability of the numerical solution.
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The initial density field is assumed to be an unperturbed linear density stratification. Transients due to

the gravity-induced adjustment of the density field to the turbulence [10] have no significant effect on later

wake dynamics.

Initially, the fluctuating and mean velocity fields are uncorrelated. Thus, a preliminary ‘‘relaxation’’ sim-

ulation [13] is run to generate a physically realistic velocity field. During relaxation, the flow is forced to
maintain constant mean and r.m.s. fluctuating velocity profiles according to Eqs. (43) and (44), while the

spatial distribution of the turbulent fluctuations, and thus the Reynolds stresses, is allowed to vary.

4.3. Run description

The spectral multidomain penalty method model was used to simulate mid-to-late time stratified turbu-

lent wakes with non-zero net momentum at Reynolds number Re = UD/m = 5 · 103 and 2 · 104 and internal

Froude number, Fr = U/(DN) = 4 and 1. U and D are the tow velocity and diameter of the virtual sphere
to which the initial wake condition at Nt = 3 would correspond to. Re is modified by changing the value of

the molecular viscosity m. Re = 5 · 103 and Fr = 4 are typical values of laboratory experiments performed

by Spedding et al. [51–54]. The choice of Re and Fr values for the simulations was made to illustrate the

effect of the turbulent scale separation (increasing with Re) and buoyancy on the dynamics of a turbulent

wake. Re = 2 · 104 is a maximum Re for the resolution employed in this study, above which under-resolu-

tion effects affect the robustness of the simulation.

The computational domain has a horizontal dimension of Lx · Ly = 16D · 16D and corresponds to a

virtual stratified water tank of height H = 12D. Such domain dimensions ensure that the domain exhibits
adequate length, width and height to allow for multiple streamwise wavelengths of a vortex shedding insta-

bility and also minimize effects of confinement and interaction with the wake�s periodic image. A uniform

spatial grid is used in the horizontal direction whereas in the vertical the spectral multidomain discretization

of Fig. 2 is employed with M = 5 non-uniform height subdomains of fixed order of approximation Nk = N.

The positioning of the subdomains is dictated by the requirement of adequate resolution of the energetic

scales of the turbulence in the active regions of the flow, which are known a priori. Increased resolution

is available at the energetic core of the wake whereas less is utilized in the less active, internal-wave dom-

inated ambient. The non-uniform Gauss–Lobatto–Legendre grid of the topmost subdomain allows for en-
hanced resolution of the subsurface region. The ratio of adjacent subdomain heights Hk/Hk� 1 is not
Fig. 2. Oxz section of the numerical grid employed in this study. The horizontal direction employs a spectral Fourier discretization and

uniform grid. In the vertical a Legendre spectral multidomain discretization is used with M = 5 subdomains of order of approximation

N and a local Gauss–Lobatto–Legendre grid. Shown is the vertical grid point distribution for Re = 5 · 103 where N = 32. Re = 2 · 104

employs N = 48. The dashed horizontal lines on the right of the figure indicate the position of the subdomain interfaces. Subdomain

origins are at z/D = 0, 3.2, 5.2, 6.8 and 8.8.
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determined analytically and is only restricted by the requirement that it be maintained within the interval

[0.5,2]. Otherwise, reflections are observed at the interfaces.

The resolution used for the Re = 5 · 103 and Re = 2 · 104 runs is 128 · 128 · 165 and

128 · 128 · 245, respectively. The low Re Fourier and Legendre spectral filters are (pF,pL) = (20,8)

and at the high Re, (pF,pL) = (16,6) is used. The filter lag is kc = 0. In the higher Re run, increased un-
der-resolution is countered by increasing N, while keeping Hk fixed (p-refinement), and reducing filter

order. The adequacy of resolution for the Re = 5 · 103 and 2 · 104 is evident in Fig. 3 which shows

one-dimensional spectra of the turbulent kinetic energy (calculated strictly within the wake region) at

three different times for the Fr = 1 simulations. For the non-filtered range of scales, the form of all

spectra in Fig. 3 is consistent with those observed in the DNS of Gourlay et al. [24] and mixed model

LES of Dommermuth et al. [13]. Despite very similar initial spectra at t = 0s (a possible effect of the

relaxation procedure), Re = 2 · 104 develops different features, primarily the presence of a more ex-

tended inertial range of nearly a decade in span. The effect of viscosity on the resolved scales of
Re = 5 · 103 is evident due to the more rapid drop-off of the spectrum within the range of scales di-

rectly unaffected by the filter. In general, the energy spectra drop off smoothly at the smallest scales

least affected by the filter. No sign of artificial energy accumulation, an unwanted feature of under-

resolution, is observed [4], over the range of scales directly affected by the filter. Instead, the filter pro-

duces artificial energy ‘‘anti-accumulation’’ as manifested by the sharp spectral slope in these regions.

As discussed in the end of Section 3.4, this sharp drop-off should not be a cause for concern because

the higher modes of the numerical solution are not necessarily physically correct.

The computational timestep Dt was chosen as such that the CFL stability criterion be obeyed in all three
spatial directions for a 3rd order stiffly stable scheme. The following requirements are imposed:
Fig. 3.
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Normalized one-dimensional spectra of turbulent kinetic energy calculated for Re = 5 · 103 and 2 · 104. The streamwise spectra

rages of estimates taken at spanwise locations located in the interval (y0 � 2LY,y0 + 2LY) on the horizontal centerplane. Spectra

wn at initialization of the actual run as well as intermediate and late times. Vertical lines represent the approximate limit over

the filter significantly affects the numerical solution (dash-double dot line: Re = 5 · 104, dotted line Re = 2 · 104).
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In all runs, at t = 0, Dt/(D/U) = 0.04 is used. At later times of a simulation, when the CFL constraint is re-

laxed, the run may be restarted with a higher timestep. It is imperative that 3rd (not lower) order BDF be

used in the restart scheme. In the temporally under-resolved simulations of interest, lower order BDF

approximation of the temporal derivative produces excessive artificial dissipation and non-physical de-

crease of the kinetic energy of the flow. During the first two timesteps of the restart, variable timestep
BDF3 [26] and 3rd order Adams–Bashforth schemes [49] are used.

4.4. Setting the initial wake lengthscales and velocities

The initial values of the coefficients in the mean and fluctuating velocity profile Eqs. (43) and (44)

are either taken directly or extrapolated from the data of Spedding [51–53]. Given Spedding�s observa-

tion that the horizontal growth rate of a stratified wake is equal to that of its unstratified counterpart,

one may use later time data for Fr = 4 and at x/D = 6 set LY/D = 0.4. The initial time Nt = 3 falls with-
in the non-equilibrium (NEQ) regime during which U0 follows a t�0.25 power law. Thus, one can esti-

mate from Spedding�s data available at Nt = 5, a value of U0/U = 0.1479 at Nt = 3. Using laboratory

data at Nt = 5 and the assumption that the constant value of LZ during the NEQ regime extends as

far back as Nt = 2, as observed in the self-propelled body experiments of Lin and Pao [43], one esti-

mates LZ = 0.4 = LY at Nt = 3. Axisymmetry in mean wake geometry is plausible during the earlier

phases of the buoyancy-influenced NEQ regime. In addition, it motivates the choice of an axisymmetric

fluctuating velocity profile in Section 4.2. Laboratory data from vertical slices indicate that at t = 0 in

(44), a1 = 0.03375, b1 = 1/15, rg/D = 0.35 and rp/D = 0.1. The Fr = 1 simulations utilize the same initial
condition. It is questionable whether two towed body wakes at Fr = 4 and Fr = 1 at identical Re and

Pr have the same characteristic lengths and velocities at x/D = 6. However, the focus of this paper is

the reproduction of the stratified wake experimental data and the sole concern with the Fr = 1 wakes

is that they obey the appropriate temporal power laws.

All simulations are run until the dimensions of the characteristic vortical structures (see Section 4.5) be-

come large in comparison to those of the computational domain. The spanwise dimension of the domain is

most restrictive in the Fr = 4 runs, whereas the Fr = 1 simulations experience confinement primarily due to

the height of the domain.

4.5. Model validation: qualitative results

Fig. 4 shows isosurfaces of the vertical vorticity xz for the Fr = 4 simulations at time Nt = 56

(x/D = 112). The formation of large horizontal (‘‘pancake’’) eddies, three-dimensional structures with a

large aspect ratio, typical of the late evolution of stratified turbulence [17,46,54] is immediately evident.

Pairings between pancakes of like-signed vorticity gradually take place as the eddies grow in size but dimin-

ish in population. At higher Re, a slight distortion in pancake geometry is observed, although the ‘‘pan-
cakes’’ exhibit a larger aspect ratio [17]. Fr = 1 isosurfaces of vorticity magnitude (Fig. 5) exhibit much

less organized structure of a smaller characteristic lengthscale. The vorticity field is organized in randomly

oriented vortex tubes. Thinner and shorter tubes characterize the Re = 2 · 104 unstratified visualizations as

an increasingly finer structure is visible [13]. As expected in an unstratified turbulent flow, the features of

coherent structures in the vorticity field are highly dependent on the vorticity magnitude threshold [32].

Fr = 1 visualizations at even lower jxjthresholds do display quite a disorganized vorticity field but also

events comparable to vortex rings as shown in Gourlay et al. [24].

A y � z section of the horizontal velocity divergence
Dz �
ou
ox

þ ov
oy

ð46Þ



Fig. 4. Isosurfaces of vertical vorticity, xz in a y and z-truncated domain for the Fr = 4 simulations. Also shown are contours of xz at

horizontal centerplane (z = Lz/2): (a) Re = 5 · 103; (b) Re = 2 · 104. Isosurface values are 1/2jxzjmax and �1/2jxzjmax (light and dark

color, respectively). Minimum/maximum contour values on centerplane slice are taken as half the minimum/maximum xz value in the

flow.
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is shown in Fig. 6 . At late times and the limit of low Froude number, Dz represents internal wave motions
in the flow. At earlier times in the development of the stratified wake, where separation of internal waves

and turbulence is not possible, Dz is simply an approximate and not exact descriptor of internal wave activ-

ity [54]. The radiation of internal waves from the stratified wake at relatively early times (Nt = 15) is evident

in Fig. 6. Although the structure of Dz in the core of the wake is rather incoherent, emitted internal wave

rays are seen propagating away at an angle of �45� from the vertical, as in the laboratory data [53]. Note

that these propagating waves experience no reflections at the subdomain interfaces.

4.6. Model validation: quantitative results

A quantitative validation of the spectral multidomain model is provided by comparing results for mean

flow quantities, the characteristic velocity and lengthscales in (43), with experimental data obtained over a

range of Re and Fr. The values of U0, LY and LZ are obtained by performing a Gaussian fit according to

(43) on the x-averaged mean profile calculated at individual sampling times in the run evolution. The model

results are also compared to DNS results of Gourlay et al. [24] at Re = 104, Fr = 10 and LES data of Dom-

mermuth et al. [13] at Re = 104, Fr = 4 mixed model LES (their corresponding Re = 105 results are not



Fig. 5. Isosurfaces of vorticity magnitude jxj in a y and z-truncated domain for the Fr = 1 simulations: (a) Re = 5 · 103;

(b) Re = 2 · 104. Isosurface value is 1/3jxjmax.

Fig. 6. Contours of horizontal velocity divergence, Dz at the vertical centerplane of the flow (x = 0.5Lx), for Fr = 4 sampled at time

Nt = 15: (a) Re = 5 · 103; (b) Re = 2 · 104. Minimum/maximum contour values are taken as half the minimum/maximum value of Dz in

the flow. The arrows indicate direction of internal wave propagation inclined at 45� with respect to the vertical.
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different). Comparison with results from the laboratory and other numerical simulations is focused on the

stratified case. The unstratified runs are not initialized with conditions equivalent to Fr = 1 laboratory

wakes at x/D = 6. Therefore, validation of the unstratified results is deemed sufficient if the timeseries

conform to power laws derived from similarity analysis [56].
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Note that this section presents only results pertaining to the larger resolved scales of the flow, as

these scales are the ones least affected by spectral filtering. The filter affects these scales only indirectly,

i.e., through non-linear interactions with the filtered scales. Thus, a stable and spectrally accurate

numerical scheme, is anticipated to produce reliable results at the larger resolved scales [44,49]. Whether

explicit spectral filtering may be viewed as a robust surrogate to conventional LES modelling would
require detailed examination of quantities associated with the smallest-resolved scales, i.e., timeseries/

profiles of turbulent kinetic energy and Reynolds stresses. Such an investigation lies outside the scope

of this paper.

First, the maximum centerline velocity U0 is considered in Fig. 7. Fig. 7 compares the spectral

multidomain results with experimental data and other DNS/LES results. One of the distinguishing char-

acteristics of stratified wakes is the presence of low mean kinetic energy decay rates in the non-equilib-

rium (NEQ) regime for Nt2[2,50] [51]. The SMPM simulations produce the same result. Both NEQ and

quasi two-dimensional (Q2D) power law exponents for the decay of U0 are within experimental uncer-
tainty. The DNS and mixed model LES data exhibit similar behavior. No significant change is observed

with increasing Re in the spectral multidomain data. The same plot (Fig. 7) also shows the evolution of

the SMPM data for U0 in the unstratified runs. For both values of Re, the unstratified wake does decay

as a function of x�2/3 determined by similarity analysis [56]. As also found in the laboratory [51,54], the

stratified wake exhibits a higher value of U0 and thus a higher mean energy density due to the con-

straining of the vertical wake scale LZ by the stratification in the NEQ regime

(see below).

The evolution of the wake horizontal lengthscale LY is shown in Fig. 8(a). Experimental observations
show that the stratified wake grows in the horizontal at the exact same x1/3 rate as its unstratified counter-
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part [54,56]. Least-square fits to the SMPM data for both Fr = 4 cases indicate power law growth rates

within the experimental uncertainty. The corresponding least square fits for the Fr = 1 data show power

law exponents very close to a value of 1/3. Throughout its entire evolution, the unstratified wake maintains

comparable values of LY and LZ (not shown) which is indicative of an axisymmetric growth, as one would

expect [56].

Finally, timeseries of the wake vertical lengthscale LZ for the Fr = 4 runs are shown in Fig. 8(b). Strat-

ified wake experiments exhibit a phase of constant LZ corresponding to the NEQ regime followed by a
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transition to a t0.6 growth rate in the Q2D regime [53]. Both trends are replicated by the SMPM data. The

constant LZ phase does end earlier in the Re = 5 · 103 run. Nevertheless, both Fr = 4 simulations transition

into a growth phase with power law exponents that appear to be closer to the experimental values than

those of the mixed model LES data. The slight discrepancies in duration of the NEQ regime and the

appearance of the breakpoint when the Q2D growth rate is established, should not be grounds for ques-
tioning the reliability of the spectral multidomain model. As discussed in detail by Spedding [51,53], both

the duration of the NEQ regime and the transition into the Q2D phase appear to be dependent on the initial

condition and specific forcing of the flow. Given that (see Section 4.2) the initial condition of a stratified

wake simulation at x/D = 6 does not match exactly its experimental counterpart (asymmetry in mean/fluc-

tuating profiles zero density perturbations, etc.) these weak discrepancies are justifiable.
5. Summary and concluding remarks

A spectral multidomain penalty method model has been developed for the solution of the three-dimen-

sional incompressible Navier–Stokes equations under the Boussinesq approximation at high Re. A high

accuracy splitting scheme is used based on a third order stiffly stable scheme for the non-linear term approx-

imation, third order backward differentiation for the temporal derivatives and a high-order numerical

boundary condition for the pressure. High spatial accuracy is established by Fourier spectral discretization

in the periodic horizontal and variable height Legendre spectral multidomain discretization in the vertical,

the latter allowing maximum flexibility in choice of boundary conditions and internal flow resolution.
Simulations of high Re at resolutions of affordable cost are inherently under-resolved. To overcome prob-

lems of numerical stability due to under-resolution, moderate spectral filtering is applied in Fourier and

Legendre space and the vertical discretization is supplemented with a multidomain penalty scheme and

strong adaptive interfacial averaging. This is the first time a penalty method is applied to the simulation

of a high Re incompressible flow, with a particular emphasis on the subdomain interfaces. The penalty

method is applied separately at two levels in the numerical methodology: the non-linear term advancement

and the viscous term treatment. Thus, examination of the internal high Re dynamics is possible without full

resolution of the thin numerical/viscous physical boundary layers.
The laboratory flow chosen to validate the numerical model is a stratified turbulent wake with non-zero

net momentum, with and without ambient stratification, at two different values of Re. The multidomain

results capture correctly the various regimes of evolution and associated transition points observed in strat-

ified laboratory wakes. The structure of the vorticity and internal wave fields of the stratified wake, at late

and early-times, respectively, are also well reproduced by the model. The unstratified simulations exhibit

power law exponents which agree with similarity theory while the associated vortical structure is compara-

ble to that observed in previous DNS and LES. All results indicate that the model-resolved three-dimen-

sional flow fields at the larger resolved scales, which are not directly influenced by the spectral filter,
contain all the salient wake dynamics.

As claimed in certain recent studies, explicit filtering when combined with a higher order method, may

serve as a viable alternative to conventional LES [44,49]. Such a claim may be justified by the common fea-

tures such an approach shares with the alternative SGS modelling techniques (estimation model, spectrally

vanishing viscosity, approximate deconvolution method) discussed in Section 1.3. However, as already indi-

cated in Section 4.6, further work, focused on the computation of turbulent quantities (turbulent kinetic

energy and dissipation rate, Reynolds stresses) is needed to affirm the reliability of high-order method

and explicit filtering, when used in tandem, as a LES methodology. A future publication will focus on clar-
ifying such a possibility. For now, the proposed model should simply be regarded as a filtered under-re-

solved DNS which attains (at considerably lower resolution) a Re twice as high as well-resolved DNS

and provides reliable results at the large scales of the flow.
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The spectral multidomain model appears well-suited for the investigation of localized stratified turbulent

flows at higher Re. The resolution used, if compared to that required by DNS at similar Re [24], is a factor

of four less in each direction, in particular at the early times of the simulation where the DNS cannot yet

opt to regrid onto a large computational domain [24]. Therefore, high run repeatibility is possible. In re-

gards to stratified turbulent wakes, the universality of scaling laws may be examined over a broad range
of Re and Fr. The physical mechanisms behind the associated power law exponents may be elucidated

by investigating the interaction between vortical and internal wave modes in the non-equilibrium (NEQ)

regime and the late-time vertical growth of the wake. The flexibility in local flow resolution of the multi-

domain technique motivate application of the model to the study of the interaction of various localized

stratified turbulent flows interacting with the vertical boundaries. Examples include the subsurface currents

generated by internal wave radiation from the turbulent wake (a topic little explored in the existing liter-

ature [2]), a stratified turbulent patch [47] and resuspension effects occurring at the benthic boundary layer

induced by travelling solitary internal waves [60]. Finally, the facility of implementation of complex bound-
ary operators in the multidomain penalty scheme make it amenable to the study of geophysical flows with

complex surface forcing (wind stress/buoyancy flux).
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